ELSEVIER

Facile cleavage of a phenyl group from SbPh_{3} by dirhenium carbonyl complexes

Richard D. Adams *, Burjor Captain, William C. Pearl Jr.
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States

Received 5 November 2007; received in revised form 15 November 2007; accepted 15 November 2007
Available online 22 November 2007
Dedicated to the memory of F.A. Cotton.

Abstract

The complex $\mathrm{Re}_{2}(\mathrm{CO})_{8}\left[\mu-\eta^{2}-\mathrm{C}(\mathrm{H})=\mathrm{C}(\mathrm{H}) \mathrm{Bu}^{n}\right](\mu-\mathrm{H})$ (1) reacts with SbPh_{3} at $68^{\circ} \mathrm{C}$ to yield the new σ-phenyl dirhenium complex $\mathrm{Re}_{2}(\mathrm{CO})_{8}\left(\mathrm{SbPh}_{3}\right)(\mathrm{Ph})\left(\mu-\mathrm{SbPh}_{2}\right)(4)$ in 72% yield. Compound 4 contains two rhenium atoms held together by a bridging SbPh_{2} ligand. One rhenium atom contains a σ-phenyl group. The other rhenium atom contains a SbPh_{3} ligand. Compound 4 was also obtained in 34% yield from the reaction of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ with SbPh_{3} in the presence of $\mathrm{UV}-\mathrm{V}$ is irradiation together with some monorhenium products: $\mathrm{HRe}(\mathrm{CO})_{4} \mathrm{SbPh}_{3}(5), \mathrm{Re}(\mathrm{Ph})(\mathrm{CO})_{4} \mathrm{SbPh}_{3}(6)$ and $f a c-\mathrm{Re}(\mathrm{Ph})(\mathrm{CO})_{3}\left(\mathrm{SbPh}_{3}\right)_{2}(7)$ in low yields. Complex 4 is split by reaction with an additional quantity of SbPh_{3} to yield the monorhenium SbPh_{3} complexes $\mathbf{6}, 7$ and mer- $\mathrm{Re}(\mathrm{Ph})(\mathrm{CO})_{3}\left(\mathrm{SbPh}_{3}\right)_{2}(\mathbf{8})$ that contain a σ-phenyl ligand. When 4 was treated with hydrogen, the phenyl ligand was eliminated as benzene and the dirhenium complexes $\mathrm{Re}_{2}(\mathrm{CO})_{8^{-}}$ $\left(\mu-\mathrm{SbPh}_{2}\right)(\mu-\mathrm{H})(\mathbf{1 0})$, and $\mathrm{Re}_{2}(\mathrm{CO})_{7}\left(\mathrm{SbPh}_{3}\right)\left(\mu-\mathrm{SbPh}_{2}\right)(\mu-\mathrm{H})(\mathbf{1 1})$, were formed that contain a bridging hydrido ligand. The doubly SbPh_{2}-bridged dirhenium complex $\mathrm{Re}_{2}(\mathrm{CO})_{7}\left(\mathrm{SbPh}_{3}\right)\left(\mu-\mathrm{SbPh}_{2}\right)_{2}(9)$ that has no metal-metal bond was also formed in these two reactions. © 2007 Elsevier B.V. All rights reserved.

Keywords: Rhenium; Antimony; Triphenylstibine; Phenyl group cleavage

1. Introduction

In recent studies, we have shown that the hexenylbridged dirhenium complex $\mathrm{Re}_{2}(\mathrm{CO})_{8}\left[\mu-\eta^{2}-\mathrm{C}(\mathrm{H})=\mathrm{C}(\mathrm{H})-\right.$ $\left.\mathrm{Bu}^{n}\right](\mu-\mathrm{H})(1)$ readily reacts with HSnPh_{3} and HGePh_{3} to yield the dirhenium complexes $\mathrm{Re}_{2}(\mathrm{CO})_{8}\left(\mu-\mathrm{SnPh}_{2}\right)_{2}$ (2) and $\mathrm{Re}_{2}(\mathrm{CO})_{8}\left(\mu-\mathrm{GePh}_{2}\right)_{2}$ (3) that contain two bridging SnPh_{2} ligands or GePh_{2} ligands, respectively, across a long rhenium-rhenium bond [1].

[^0]Cleavage of a phenyl ring from the SnPh_{3} and GePh_{3} groups of the HSnPh_{3} and HGePh_{3} molecules is required to form the bridging SnPh_{2} and GePh_{2} ligands, although no intermediates were observed in the formation of these products. However, in related studies, we have shown that the reactions of HSnPh_{3} and HGePh_{3} with certain polynuclear metal carbonyl complexes proceed by initial oxidative addition of the SnH or GeH bonds to metal cluster complexes containing a hydrido ligand and a SnPh_{3} or GePh_{3} ligand by a process that results in an opening of the cluster. When these compounds are heated, a phenyl ring is then cleaved from the SnPh_{3} or GePh_{3} ligand which then combines with a hydrido ligand and is eliminated as benzene and bridging MPh_{2} ligands are formed in the cluster complexes, see Scheme 1, M = Ge, Sn [2].

Cleavage of phenyl groups from phosphine ligands is also well known in reactions of metal carbonyl complexes with PPh_{3} and related ligands [3]. These processes often,

Scheme 1.
but not always, proceed by ortho-metalation of the phenyl ring. $\mathrm{P}-\mathrm{C}$ bond cleavage may follow resulting in the formation of a bridging "benzyne" ligand. Leong et al. have shown that phenyl groups can also be cleaved from SbPh_{3} in its reactions with triosmium and triruthenium carbonyl complexes [4]. Because of the similarities between SbPh_{3} and HSnPh_{3}, we decided to examine the reactions of SbPh_{3} with 1 and also with $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ under conditions of UV-Vis irradiation. These results are reported here. Cleavage of a phenyl ring from the SbPh_{3} ligand to give products containing σ-coordinated phenyl groups is the dominant mode of reaction with these dirhenium compounds.

2. Experimental

2.1. General data

Reagent grade solvents were dried by the standard procedures and were freshly distilled prior to use. Infrared spectra were recorded on a Thermo Nicolet Avatar 360 FT-IR spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Mercury 300 spectrometer operating at 300.1 MHz. Mass spectrometric (MS) measurements performed by a direct-exposure probe using electron impact ionization (EI) were made on a VG 70S instrument. Elemental Analyses were performed by Desert Analytics (Tucson, AZ). SbPh_{3} and $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ were obtained from STREM and were used without further purification. $\mathrm{Re}_{2^{-}}$ $(\mathrm{CO})_{8}\left[\mu-\eta^{4}-\mathrm{C}(\mathrm{H})=\mathrm{C}(\mathrm{H}) \mathrm{Bu}^{\mathrm{n}}\right](\mu-\mathrm{H})$ was prepared according to a previously reported procedure [5]. Product separations were performed by TLC in air on Analtech 0.25 and 0.5 mm silica gel $60 \AA F_{254}$ glass plates.

$$
\begin{aligned}
& \text { 2.2. Reaction of } \operatorname{Re}_{2}(C O)_{8}\left[\mu-\eta^{4}-C(H)=C(H) B u^{n}\right](\mu-H) \\
& \text { (1) with } \mathrm{SbPh}_{3}
\end{aligned}
$$

(a) At $68{ }^{\circ} \mathrm{C}: 104.5 \mathrm{mg}(0.296 \mathrm{mmol})$ of SbPh_{3} was added to $51.0 \mathrm{mg}(0.07467 \mathrm{mmol})$ of $\mathrm{Re}_{2}(\mathrm{CO})_{8}\left[\mu-\eta^{4}-\right.$ $\left.\mathrm{C}(\mathrm{H})=\mathrm{C}(\mathrm{H}) \mathrm{Bu}^{n}\right](\mu-\mathrm{H})$ in 80 mL of hexane. The reaction was heated to reflux for 3 h . The solvent was removed in vacuo, and the product was then isolated by TLC using a 4:1 hexane/methylene chloride solvent mixture. 70.0 mg (72% yield) of $\mathrm{Re}_{2}(\mathrm{CO})_{8}\left(\mathrm{SbPh}_{3}\right)(\mathrm{Ph})\left(\mu-\mathrm{SbPh}_{2}\right)$ (4) was obtained. Spectral data for 4: IR $v_{C O}\left(\mathrm{~cm}^{-1}\right.$ in hexane): 2087(m), 2072(m), 2012(m), 2007(m), 1998(s), 1979(m), 1961(m), 1937(m), 1929(m). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, in ppm) $\delta=7.08-7.63(\mathrm{~m}, 25 \mathrm{H}, \mathrm{Ph}), 6.77-6.94(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{Re})$.

Mass Spec. EI/MS $m / z .1302$. The isotope pattern is consistent with the presence of two rhenium atoms and two antimony atoms. Elemental Anal. Calc.: C, 40.57; H, 2.32. Found: C, 40.51; H, 2.54\%.
(b) At $25^{\circ} \mathrm{C}: 53.1 \mathrm{mg}(0.150 \mathrm{mmol})$ of SbPh_{3} was added to $33.0 \mathrm{mg}(0.0483 \mathrm{mmol})$ of $\mathrm{Re}_{2}(\mathrm{CO})_{8}\left[\mu-\eta^{4}-\mathrm{C}(\mathrm{H})=\mathrm{C}(\mathrm{H})-\right.$ $\left.\mathrm{Bu}^{n}\right](\mu-\mathrm{H})$ in 20 mL of hexane. The reaction was allowed to stir at room temperature for 24 h . The solvent was removed in vacuo, and the product was then isolated by TLC using a $4: 1$ hexane/methylene chloride solvent mixture to give 15.6 mg (25% yield) of 4 . A small amount of $1(6 \%)$ was recovered from this reaction.

2.3. Photolysis of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ with SbPh_{3}

$\mathrm{SbPh}_{3}(104 \mathrm{mg}, 0.2947 \mathrm{mmol})$ was added to a solution of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ in 20 mL of benzene in a 100 mL three-neck flask equipped with a reflux condenser and a gas inlet. A slow stream of nitrogen was allowed to flow through the flask that was cooled to $0^{\circ} \mathrm{C}$ and irradiated for 15 min . using a high pressure mercury UV lamp (American Ultraviolet Company, 1000 W) at the 250 wpi setting. The solvent was removed in vacuo, and the products were then isolated by TLC by using a $4: 1$ hexane/methylene chloride solvent mixture to yield in order of elution the following: 3.7 mg (4% yield) of colorless $\mathrm{HRe}(\mathrm{CO})_{4} \mathrm{SbPh}_{3}, 5,5.7 \mathrm{mg}(5 \%$ yield) of colorless $\mathrm{Re}(\mathrm{Ph})(\mathrm{CO})_{4} \mathrm{SbPh}_{3}, \mathbf{6}, 4.0 \mathrm{mg}$ (3% yield) of colorless $\mathrm{fac}-\mathrm{Re}(\mathrm{Ph})(\mathrm{CO})_{3}\left(\mathrm{SbPh}_{3}\right)_{2}, 7$, and 31.7 mg (34% yield) of colorless 4. Spectral data for 5. IR $v_{C O}$ (cm^{-1} in hexane): 2080(w), 1992(m), 1979(s), 1964(m). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in ppm) $\delta=7.30-7.55(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph})$, -6.00 (s, 1H, hydride). Elemental Anal. Calc.: C, 40.51; H, 2.47. Found: C, $40.52 ;$ H, 2.50%. Spectral data for 6. IR $v_{C O}\left(\mathrm{~cm}^{-1}\right.$ in hexane): 2083(m), 1996(m), 1982(s), 1951(m). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, in ppm$) \delta=7.20-7.65(\mathrm{~m}$, $15 \mathrm{H}, \mathrm{Ph}), 6.81-6.93(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{Re})$. Elemental Anal. Calc.: C, 46.71; H, 2.77. Found: C, 45.93; H, 2.77. Spectral data for 7. IR $v_{C O}\left(\mathrm{~cm}^{-1}\right.$ in hexane): 2017(s), 1940(m), 1912(m). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, in ppm$) \delta=7.12-7.38(\mathrm{~m}$, $30 \mathrm{H}, \mathrm{Ph}), 7.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{Re}), 6.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}-\mathrm{Re}), 6.58$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{Re}$). Mass Spec. EI/MS $m / z .1054$. The isotope pattern is consistent with the presence of one rhenium atom.

2.4. Reaction of $\mathbf{4}$ with SbPh_{3}

$\mathrm{SbPh}_{3}(90.2 \mathrm{mg}, 0.256 \mathrm{mmol})$ was added to a solution of $4(31.7 \mathrm{mg}, 0.0243 \mathrm{mmol})$ in 20 mL of octane. The reaction
was heated to reflux for 3.5 h . The solvent was removed in vacuo, and the products were then isolated by TLC by using a 3:1 hexane/methylene chloride solvent mixture to yield in order of elution the following: $4.8 \mathrm{mg}(14 \%$ yield) of 6 , $2.0 \mathrm{mg}(4 \%$ yield $)$ of mer $-\mathrm{Re}(\mathrm{Ph})(\mathrm{CO})_{3}\left(\mathrm{SbPh}_{3}\right)_{2}(\mathbf{8}), 1.1 \mathrm{mg}$ (3% yield) of $\mathrm{Re}_{2}(\mathrm{CO})_{7}\left(\mathrm{SbPh}_{3}\right)\left(\mu-\mathrm{SbPh}_{2}\right)_{2}(9), 2.0 \mathrm{mg}(4 \%$ yield) $7,9.7 \mathrm{mg}$ (31% recovered) of 4 . Spectral data for 8. IR $v_{C O}\left(\mathrm{~cm}^{-1}\right.$ in hexane): 1933(s), $1910(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, in ppm) $\delta=7.15-7.67(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph})$, 6.52-6.93 (m, 5H, Ph-Re). Mass Spec. EI/MS m/z. 1054, $\mathrm{M}^{+} ; 998, \mathrm{M}^{+}-2 \mathrm{CO}$. The isotope pattern is consistent with the presence of one rhenium atom. Spectral data for 9: IR $v_{C O}\left(\mathrm{~cm}^{-1}\right.$ in hexane): 2072(m), 2024(w), 2008(vw), 1987(s), 1981(s), 1955(s), 1937(s), 1928(m). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, in ppm$) \delta=6.89-7.74(\mathrm{~m}, 35 \mathrm{H}, \mathrm{Ph}) . \mathrm{EI} / \mathrm{MS}$ $m / z, 1474, \mathrm{M}^{+}, 1446, \mathrm{M}^{+}-\mathrm{CO}, 1418, \mathrm{M}^{+}-2 \mathrm{CO}, 1390$, $\mathrm{M}^{+}-3 \mathrm{CO}$. The isotope pattern is consistent with the presence of two rhenium atoms and three antimony atoms.

2.5. Reaction of $\mathbf{4}$ with H_{2}

Compound 4 ($44.5 \mathrm{mg}, 0.0342 \mathrm{mmol}$) was dissolved in 25 mL of octane. While purging with H_{2} the reaction was heated to reflux for 6.25 h . The solvent was removed in vacuo, and the products were then isolated by TLC using 3:1 hexane/methylene chloride solvent mixture to yield in order of elution the following: 9.4 (31\% yield) $\mathrm{Re}_{2}(\mathrm{CO})_{8^{-}}$ $(\mu-\mathrm{H})\left(\mu-\mathrm{SbPh}_{2}\right)(\mathbf{1 0}), 3.7 \mathrm{mg}\left(9 \%\right.$ yield) $\mathrm{Re}_{2}\left(\mathrm{SbPh}_{3}\right)(\mathrm{CO})_{7^{-}}$ $\left(\mu-\mathrm{SbPh}_{2}\right)(\mu-\mathrm{H})(11), 3.4 \mathrm{mg}$ (7% yield) 9. Spectral data for 10: IR $v_{C O}\left(\mathrm{~cm}^{-1}\right.$ in hexane): 2102(w), 2078(m), 2009(s), 1997(s), 1971(s) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, in $\mathrm{ppm}) \delta=7.35-7.73(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}),-16.341$ (s , hydride, 1H). EI/MS $m / z .874, \mathrm{M}^{+}, 846, \mathrm{M}^{+}-\mathrm{CO}$. The isotope pattern is consistent with the presence of two rhenium atoms and one antimony atom. Spectral data for 11: IR $v_{C O}$ (cm^{-1} in hexane): 2086(w), 2035(w), 2025(w), 1995(s), 1959(m), 1940(m), 1931(m) cm ${ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, in $\mathrm{ppm}) \delta=7.27-7.80(\mathrm{~m}, \mathrm{Ph}, 25 \mathrm{H}),-16.00$ (s, hydride, $1 \mathrm{H})$. EI/MS m/z.1198, $\mathrm{M}^{+}, 1170, \mathrm{M}^{+}-\mathrm{CO}$. The isotope pattern is consistent with the presence of two rhenium atoms and two antimony atoms.

2.6. Detection of benzene formation

A $4.8-\mathrm{mg}$ amount of $\mathbf{4}$ was dissolved in 0.6 mL of tolu-ene- d_{8} in a 5 mm NMR tube. The NMR tube was evacuated and filled with H_{2} five times. The NMR tube was heated in an oil bath at $100^{\circ} \mathrm{C}$ for 3 h . After this period of time the NMR tube was taken out of the oil bath and cooled to room temperature to acquire an ${ }^{1} \mathrm{H}$ NMR spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum of this solution showed a singlet at $\delta=7.13$ indicating the presence of benzene in solution.

2.7. Crystallographic analyses

Colorless single crystals of 4 suitable for X-ray diffraction analyses were obtained by slow evaporation of solvent
from an octane/methylene chloride solvent mixture at room temperature. Colorless single crystals of 5, 6, 9, $\mathbf{1 0}$ and $\mathbf{1 1}$ suitable for X-ray diffraction analyses were obtained by slow evaporation of solvent from a hexane/methylene chloride solvent mixture at $-25^{\circ} \mathrm{C}$. Colorless single crystals of 7 and 8 suitable for X-ray diffraction analyses were obtained by slow evaporation of solvent from an octane/ benzene solvent mixture at room temperature. Each data crystal was glued onto the end of a thin glass fiber. X-ray intensity data were measured by using a Bruker SMART APEX CCD-based diffractometer using Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$. The raw data frames were integrated with the sAINT+ program by using a narrow-frame integration algorithm [6]. Correction for Lorentz and polarization effects were also applied with saint + . An empirical absorption correction based on the multiple measurement of equivalent reflections was applied using the program SADABS. All structures were solved by a combination of direct methods and difference Fourier syntheses, and refined by full-matrix least-squares on F^{2}, using the shelxtl software package [7]. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in geometrically idealized positions and included as standard riding atoms during the least-squares refinements. Crystal data, data collection parameters, and results of the analyses are listed in Tables 1-3.

Compounds 4, 5, 7, 10 and 11 all crystallized in the triclinic crystal system. The space group $P \overline{1}$ was assumed

Table 1
Crystallographic data for compounds 4 and 5

Compound	4	5
Empirical formula	$\mathrm{Re}_{2} \mathrm{Sb}_{2} \mathrm{O}_{8} \mathrm{C}_{44} \mathrm{H}_{30}$	$\mathrm{ReSbO}_{4} \mathrm{C}_{22} \mathrm{H}_{16}$
Formula weight	1302.58	652.30
Crystal system	Triclinic	Triclinic
Lattice parameters		
$a(\mathrm{\AA})$	11.1865(4)	9.5987(6)
$b(\AA)$	13.3720(5)	10.9613(7)
$c(\AA)$	15.6059(6)	11.1779(7)
$\alpha\left({ }^{\circ}\right)$	93.979(1)	71.178(1)
$\beta\left({ }^{\circ}\right)$	95.802(1)	86.402(1)
$\gamma\left({ }^{\circ}\right)$	114.546(1)	84.894(1)
$V\left(\AA^{3}\right)$	2096.51(14)	1108.04(12)
Space group	P1 (\#2)	P1 (\#2)
Z value	2	2
$\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	2.063	1.955
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) $\left(\mathrm{mm}^{-1}\right)$	7.081	6.699
Temperature (K)	294(2)	294(2)
$2 \Theta_{\text {max }}\left({ }^{\circ}\right)$	56.64	56.62
Number of observed ($I>2 \sigma(I)$)	8149	4720
Number of parameters	505	257
Goodness-of-fit (GOF)	1.036	1.044
Maximum shift in cycle	0.002	0.001
Residuals ${ }^{\text {a }}$: R_{1}; $w R_{2}$	0.0289; 0.0597	0.0312; 0.0639
Absorption correction, maximum/minimum	Multi-scan, $1.000 / 0.810$	Multi-scan, $1.000 / 0.812$
Largest peak in final difference in map $\left(\mathrm{e}^{-} / \AA^{3}\right)$	1.349	1.521
${ }^{\text {a }} R=\sum_{h k l}\left(\| \| F_{\text {obs }}\left\|-\left\|F_{\text {calc }}\right\|\right.\right.$) $\left./ \sum_{h k l}\right\| F_{\text {obs }} \mid ; \quad R_{w}=\left[\sum_{h k l} w\left(\left\|F_{\text {obs }}\right\|-\left\|F_{\text {calc }}\right\|\right)^{2} /\right.$		
$\begin{aligned} & \left.\sum_{h k k} w F_{\text {obs }}^{2}\right]^{1 / 2} ; \quad w=1 / \sigma^{2}\left(F_{\mathrm{obs}}\right) ; \\ & \left.\left.n_{\text {vari }}\right)\right]^{1 / 2} . \end{aligned}$	$\mathrm{F}=\left[\sum_{h k l} w\left(\mid F_{\mathrm{ob}}\right.\right.$	$\left.F_{\text {calc }}\right)^{2} /\left(n_{\text {data }}-\right.$

Table 2
Crystallographic data for compounds 6, 7 and $\mathbf{8}$

Compound	6	7	8
Empirical formula	$\mathrm{ReSbO}_{4} \mathrm{C}_{28} \mathrm{H}_{20}$	$\mathrm{ReSb}_{2} \mathrm{O}_{3} \mathrm{C}_{45} \mathrm{H}_{35}$	$\mathrm{ReSb}_{2} \mathrm{O}_{3} \mathrm{C}_{45} \mathrm{H}_{35}$
Formula weight	728.39	1053.43	1053.43
Crystal system	Monoclinic	Triclinic	Monoclinic
Lattice parameters			
$a(\mathrm{\AA})$	16.9494(8)	10.4828(4)	12.5817(4)
$b(\AA)$	12.0132(6)	$11.0835(4)$	21.1773(6)
$c(\mathrm{~A})$	13.6967(6)	19.2821(7)	15.2322(5)
$\alpha\left({ }^{\circ}\right)$	90	81.904(1)	90
$\beta\left({ }^{\circ}\right)$	110.199(1)	87.127(1)	90.547(1)
$\gamma\left({ }^{\circ}\right)$	90	66.110(1)	90
$V\left(\AA^{3}\right)$	2617.4(2)	2027.9(1)	4058.4(2)
Space group	$P 2{ }_{1} / c$ (\#14)	P1 (\#2)	$P 2{ }_{1} / n(\# 14)$
Z value	4	2	4
$\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.848	1.725	1.724
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) $\left(\mathrm{mm}^{-1}\right)$	5.683	4.337	4.334
Temperature (K)	294(2)	294(2)	294(2)
$2 \Theta_{\text {max }}\left({ }^{\circ}\right.$)	56.62	56.64	56.62
Number of observed $(I>2 \sigma(I))$	5093	8086	8051
Number of parameters	307	460	460
Goodness of fit (GOF)	1.000	1.049	1.075
Maximum shift in cycle	0.002	0.001	0.002
Residuals ${ }^{\text {a }}$: $R_{1} ; w R_{2}$	0.0264;0.0552	0.0357; 0.0694	0.0247; 0.0581
Absorption correction, maximum/ minimum	Multi-scan, 1.000/0.773	Multi-scan, 1.000/0.845	Multi-scan, 1.000/0.694
Largest peak in final difference Map (e^{-} / \AA^{3})	0.914	2.301	1.314
${ }^{\text {a }} R=\sum_{h k l}\left(\| \| F_{\text {obs }}\left\|-\left\|\mathrm{F}_{\text {calc }}\right\|\right\|\right) / \sum_{h k l}\left\|F_{\text {obs }}\right\| ; \mathrm{R}_{\mathrm{w}}=\left[\sum_{h k l} w\left(\left\|F_{\mathrm{obs}}\right\|-\left\|\mathrm{F}_{\text {calc }}\right\|\right)^{2} /\right.$			
$\begin{aligned} & \left.\sum_{h k l} w \mathrm{~F}_{\mathrm{obs}}^{2}\right]^{1 / 2} ; \quad w= \\ & \left.\left.n_{\mathrm{vari}}\right)\right]^{1 / 2} . \end{aligned}$	$\left.\sum_{h k l} w \mathrm{~F}_{\mathrm{obs}}^{2}\right]^{1 / 2} ; \quad w=1 / \sigma^{2}\left(\mathrm{~F}_{\mathrm{obs}}\right) ; \mathrm{GOF}=\left[\sum_{h k l} w\left(\left\|F_{\mathrm{obs}}\right\|-\left\|F_{\text {calc }}\right\|\right)^{2} /\left(n_{\text {data }}-\right.\right.$		

and confirmed by the successful solution and refinement for each of the structures. For compound $\mathbf{1 0}$ there were two independent molecules present in the asymmetric unit. The hydride ligand was located along the $\mathrm{Re}-\mathrm{Re}$ bond in each molecule and they were refined on their positional parameters with a fixed isotropic thermal parameter. One of the phenyl rings (C61-C66) in the structural analysis of compound $\mathbf{1 1}$ was disordered over two orientations. It was refined in 50/50 disorder model with isotropic thermal parameters. The hydride ligand was located, and was refined by using geometric restraints (a fixed $\mathrm{Re}-\mathrm{H}$ bond distance of $1.75 \AA$) and an isotropic thermal parameter.

Compounds $\mathbf{6}$ and $\mathbf{8}$ crystallized in the monoclinic crystal system. The space groups $P 2_{1} / c$ and $P 2_{1} / n$, respectively were identified uniquely on the basis of the systematic absences in the intensity data. Compound 9 crystallized in the orthorhombic crystal system. The systematic absences were consistent with either of the space group $P c a 2_{1}$ or $P b c m$. The structure could only be solved in the former space group. With $Z=8$ there are two independent molecules present in the asymmetric unit. During the final

Table 3
Crystallographic data for compounds $\mathbf{9 , 1 0}$ and $\mathbf{1 1}$

Compound	9	10	11
Empirical formula	$\mathrm{Re}_{2} \mathrm{Sb}_{3} \mathrm{O}_{7} \mathrm{C}_{49} \mathrm{H}_{35}$	$\mathrm{Re}_{2} \mathrm{SbO}_{8} \mathrm{C}_{20} \mathrm{H}_{11}$	$\mathrm{Re}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7} \mathrm{C}_{37} \mathrm{H}_{26}$
Formula weight	1473.42	873.44	1198.48
Crystal system	Orthorhombic	Triclinic	Triclinic
Lattice parameters			
$a(\mathrm{\AA})$	18.9011(7)	12.1374(6)	8.8885(4)
$b(\AA)$	22.0648(8)	13.9418(6)	11.1834(5)
$c(\AA)$	22.5149(8)	16.1462(7)	19.3107(9)
$\alpha\left({ }^{\circ}\right)$	90	106.167(1)	102.5820(1)
$\beta\left({ }^{\circ}\right)$	90	106.119(1)	97.6860(1)
$\gamma\left({ }^{\circ}\right)$	90	100.181 (1)	90.629 (1)
$V\left(\AA^{3}\right)$	9389.8(6)	2423.55(19)	1855.03(15)
Space group	Pca2 ${ }_{1}$ \# 29)	P1 (\#2)	P1 (\#2)
Z value	8	4	2
$\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	2.085	2.394	2.146
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) $\left(\mathrm{mm}^{-1}\right)$	6.890	11.110	7.990
Temperature (K)	294(2)	294(2)	294(2)
$2 \Theta_{\text {max }}\left({ }^{\circ}\right)$	50.06	52.04	52.04
Number of observed $(I>2 \sigma(I))$	12344	6665	5649
Number of parameters	1090	565	427
Goodness of fit (GOF)	1.011	0.991	1.081
Maximum shift in cycle	0.003	0.001	0.000
Residuals ${ }^{\text {a }}$: $R_{1} ; w R_{2}$	0.0351; 0.0684	0.0401; 0.0908	0.0454; 0.0830
Absorption correction, maximum/ minimum	Multi-scan, $1.000 / 0.733$	Multi-scan, 1.000/0.107	Multi-scan, $1.00 / 0.505$
Largest peak in final difference $\operatorname{map}\left(\mathrm{e}^{-} / \AA^{3}\right)$	1.452	1.377	1.123
${ }^{\text {a }} R=\sum_{h k l}\left(\| \| F_{\text {obs }}\left\|-\left\|F_{\text {calc }}\right\|\right\|\right) / \sum_{h k l}\left\|F_{\text {obs }}\right\| ; \quad \mathrm{R}_{\mathrm{w}}=\left[\sum_{h k l} w\left(\left\|F_{\text {obs }}\right\|-\left\|F_{\text {calc }}\right\|\right)^{2} /\right.$			
$\begin{aligned} & \left.\sum_{h k l} w F_{\mathrm{obs}}^{2}\right]^{1 / 2} ; \quad w=1 / \sigma^{2}\left(F_{\mathrm{obs}}\right) ; \quad \mathrm{GOF}=\left[\sum_{h k l} w\left(\left\|F_{\mathrm{obs}}\right\|-\left\|F_{\mathrm{calc}}\right\|\right)^{2} /\left(n_{\mathrm{data}}-\right.\right. \\ & \left.\left.n_{\mathrm{vari}}\right)\right]^{1 / 2} . \end{aligned}$			

stages of refinement atoms C12 and C42A had negative anisotropic thermal parameters. These two atoms were subsequently refined with isotropic thermal parameters.

3. Results and discussion

Only one product $\mathrm{Re}_{2}(\mathrm{CO})_{8}\left(\mathrm{Ph}^{(}\right)\left(\mathrm{SbPh}_{3}\right)\left(\mu-\mathrm{SbPh}_{2}\right)(4)$ was obtained in 72% yield from the reaction of $\mathbf{1}$ with SbPh_{3} in hexane solution by heating to reflux for 1 h see Scheme 2.

The same product was obtained at $25^{\circ} \mathrm{C}$, but the yield was much lower, 25% after 24 h . Compound 4 was characterized by a combination of IR, ${ }^{1} \mathrm{H}$ NMR, mass spectral and single-crystal X-ray diffraction analyses. An ORTEP diagram of the structure $\mathbf{4}$ is shown in Fig. 1. The crystal of $\mathbf{4}$ contains one complete formula equivalent in the asymmetric crystal unit. The molecule contains the two rhenium atoms that are bridged by a SbPh_{2} ligand. The rhenium atoms are not mutually bonded, $\operatorname{Re}(1) \cdots \operatorname{Re}(2)=$ 4.785(1) \AA. The Re-Re bonding distance in $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ is 3.042(1) \AA [8]. The $\operatorname{Re}-\operatorname{Re}$ bond distance in 2 is

Scheme 2.

Fig. 1. An ORTEP diagram of the molecular structure of $\mathrm{Re}_{2}(\mathrm{CO})_{8^{-}}$ $\left(\mathrm{SbPh}_{3}\right)(\mathrm{Ph})\left(\mu-\mathrm{SbPh}_{2}\right)(4)$ showing 30% thermal ellipsoid probability. Selected interatomic bond distances (\AA) and angles $\left({ }^{\circ}\right)$ are as follows: $\operatorname{Re}(1) \ldots \operatorname{Re}(2)=4.785(1) \AA, \quad \operatorname{Re}(1)-\mathrm{C}(1)=2.228(5), \quad \operatorname{Re}(1)-\mathrm{Sb}(1)=$ $2.7676(4), \quad \operatorname{Re}(2)-\mathrm{Sb}(2)=2.7329(4), \quad \operatorname{Re}(2)-\mathrm{Sb}(1)=2.8159(4) ; \quad \mathrm{C}(1)-$ $\operatorname{Re}(1)-\mathrm{Sb}(1)=91.67(12), \mathrm{Sb}(2)-\operatorname{Re}(2)-\mathrm{Sb}(1)=101.176(11), \operatorname{Re}(1)-\mathrm{Sb}(1)-$ $\operatorname{Re}(2)=117.96(1)$.
$3.1685(3) \AA$ in its monoclinic form and 3.1971(4) \AA in a triclinic form [1]. The bridging SbPh_{2} is slightly asymmetrical in its bonding to the two rhenium atoms, $\operatorname{Re}(1)-$ $\mathrm{Sb}(1)=2.7676(4) \AA$ and $\operatorname{Re}(2)-\mathrm{Sb}(1)=2.8159(4) \AA$. This could be due to steric effects since $\operatorname{Re}(2)$ contains a bulky SbPh_{3} ligand in addition to the four terminal carbonyl ligands, while $\operatorname{Re}(1)$ has only the smaller σ-phenyl group with its four terminal carbonyl ligands. Both $\mathrm{Re}-\mathrm{Sb}$ distances in $\mathbf{4}$ are slightly longer than those found for the bridging SbPh_{2} ligand in the compound $\mathrm{Re}_{2}(\mathrm{CO})_{7^{-}}$ $\left(\mathrm{SbPh}_{3}\right)\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{SbPh}_{2}\right)(\mathbf{1 2}), \mathrm{Re}-\mathrm{Sb}=2.748(2) \mathrm{A}$ and $\operatorname{Re}(2)-\mathrm{Sb}(1)=2.731(1) \AA$, which contains two ligands bridging the two metal atoms [9]. Compound $\mathbf{4}$ contains one SbPh_{3} ligand coordinated to the metal atom $\mathrm{Re}(2)$. The $\mathrm{Re}-\mathrm{Sb}$ distance is slightly shorter, $\mathrm{Re}(2)-\mathrm{Sb}(2)=$ $2.7329(4) \AA$, than those of the bridging SbPh_{2} ligand, but it is longer than the $\mathrm{Re}-\mathrm{Sb}$ bond distance to the SbPh_{3} ligand in 12, $\mathrm{Re}-\mathrm{Sb}=2.671(1) \AA$ [9]. The $\mathrm{Re}-\mathrm{C}$ distance to the phenyl ring, $\operatorname{Re}(1)-\mathrm{C}(1)=2.228(5) \AA$, is only slightly longer than the $\mathrm{Re}-\mathrm{C}$ distance to the phenyl ring in the compound $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Re}(\mathrm{CO})_{2} \mathrm{I}(\mathrm{Ph}), 2.191(5) \AA$ [10].

Compound $\mathbf{4}$ was also the major product obtained from the reaction of SbPh_{3} with $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ in the presence of UV-Vis irradiation, but the yield was much lower, 34% yield. In addition to 4 , three minor products were obtained from this reaction, see Scheme 3. These were identified as $\mathrm{HRe}(\mathrm{CO})_{4} \mathrm{SbPh}_{3}, \mathbf{5}, 5 \%$ yield; $\operatorname{Re}(\mathrm{Ph})(\mathrm{CO})_{4} \mathrm{SbPh}_{3}, \mathbf{6}, 3 \%$

Scheme 3.
yield and $\mathrm{fac}-\mathrm{Re}(\mathrm{Ph})(\mathrm{CO})_{3}\left(\mathrm{SbPh}_{3}\right)_{2}, 7,3 \%$ yield. Each of the new products was characterized by IR, ${ }^{1} \mathrm{H}$ NMR and a single crystal X-ray diffraction analysis.

An ORTEP diagram of the molecular structure of $\mathbf{5}$ is shown in Fig. 2. Compound $\mathbf{5}$ contains only one rhenium atom. It has four terminal carbonyl ligands, one SbPh_{3} ligand and a hydride ligand, $\mathrm{H}(1)$. The source of the hydride ligand has not been identified. The $\mathrm{Re}-\mathrm{Sb}$ distance is similar to that found to the SbPh_{3} ligand found in compound $4, \operatorname{Re}(1)-\mathrm{Sb}(1)=2.6931(4) \AA$. The hydrido ligand was located and refined crystallographically. It is positioned cis to the SbPh_{3} ligand and it exhibits the usual characteristic high field resonance shift in its ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta=-6.00$. The $\operatorname{Re}-\mathrm{H}$ bond distance, $\operatorname{Re}(1)-$ $\mathrm{H}(1)=1.78(5) \AA$, is similar to the Re-H bond distances that were observed in the related phosphine compounds, $f a c-\mathrm{Re}(\mathrm{H})(\mathrm{CO})_{3}\left[\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right], 1.70(4) \AA[11] ;$ $f a c-\mathrm{Re}(\mathrm{H})(\mathrm{CO})_{3}\left[\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}\right], 1.75(4) \AA[11] ; \operatorname{Re}(\mathrm{H})-$ $\left.(\mathrm{CO})_{4} \mathrm{P}(\mathrm{OMe}) \mathrm{Ph}_{2}\right], 1.60(8) \AA[12]$ and $m e r-\operatorname{Re}(\mathrm{H})(\mathrm{CO})_{3^{-}}$ $\left(\mathrm{P}(\mathrm{OMe}) \mathrm{Ph}_{2}\right)_{2}, 1.70(6) \AA[12]$.

Fig. 2. An ORTEP diagram of the molecular structure of $\operatorname{HRe}(\mathrm{CO})_{4}$ $\mathrm{SbPh}_{3}(5)$, showing 30\% thermal ellipsoid probability. Selected interatomic bond distances (\AA) and angles $\left({ }^{\circ}\right)$ are as follows: $\operatorname{Re}(1)-\mathrm{Sb}(1)=2.6931(4)$, $\operatorname{Re}(1)-\mathrm{H}(1)=1.78(5), \quad \operatorname{Re}(1)-\mathrm{C}(14)=1.952(5), \quad \operatorname{Re}(1)-\mathrm{C}(12)=1.965(5)$, $\operatorname{Re}(1)-\mathrm{C}(11)=1.981(5), \quad \operatorname{Re}(1)-\mathrm{C}(13)=1.987(5) ; \quad \mathrm{Sb}(1)-\operatorname{Re}(1)-\mathrm{H}(1)=$ 79.7(17).

An ORTEP diagram of the structure of $\mathbf{6}$ is shown in Fig. 3. Compound $\mathbf{6}$ is very similar to $\mathbf{5}$. It contains only one rhenium atom, four terminal carbonyl ligands, one SbPh_{3} ligand and a σ-phenyl ligand located cis to the SbPh_{3} ligand. The $\mathrm{Re}-\mathrm{Sb}$ distance is similar to that found in compounds 4 and $5, \operatorname{Re}(1)-\operatorname{Sb}(1)=2.7124(3) \AA$. The $\operatorname{Re}-\mathrm{C}$ distance to the phenyl ring, $\operatorname{Re}(1)-\mathrm{C}(15)=$ $2.226(4) \AA$, is very similar to the Re-C distance found in 4 and the compound $\mathrm{Cp}^{*} \operatorname{Re}(\mathrm{CO})_{2}(\mathrm{I}) \mathrm{Ph},[10]$.

Compound 7 is a SbPh_{3} derivative of 6 . An ORTEP diagram of the structure of 7 is shown in Fig. 4. The three CO

Fig. 3. An ORTEP diagram of the molecular structure of $\operatorname{Re}(\mathrm{Ph})-$ $(\mathrm{CO})_{4} \mathrm{SbPh}_{3}$ (6), showing 30% thermal ellipsoid probability. Selected interatomic bond distances (\AA) and angles $\left({ }^{\circ}\right)$ are as follows: $\operatorname{Re}(1)-$ $\mathrm{Sb}(1)=2.7124(3), \quad \operatorname{Re}(1)-\mathrm{C}(15)=2.226(4), \quad \operatorname{Re}(1)-\mathrm{C}(14)=1.984(4)$, $\operatorname{Re}(1)-\mathrm{C}(12)=1.984(4), \operatorname{Re}(1)-\mathrm{C}(11)=1.929(4), \operatorname{Re}(1)-\mathrm{C}(13)=1.952(5)$; $\mathrm{Sb}(1)-\operatorname{Re}(1)-\mathrm{C}(15)=85.65(8)$.

Fig. 4. An ORTEP diagram of the molecular structure of fac$\operatorname{Re}(\mathrm{Ph})(\mathrm{CO})_{3}\left(\mathrm{SbPh}_{3}\right)_{2}$ (7), showing 30% thermal ellipsoid probability. Selected interatomic bond distances (\AA) and angles $\left({ }^{\circ}\right)$ are as follows: $\operatorname{Re}(1)-$ $\mathrm{Sb}(1)=2.7176(4), \quad \operatorname{Re}(1)-\mathrm{Sb}(2)=2.7151(3), \quad \operatorname{Re}(1)-\mathrm{C}(14)=2.214(5)$, $\operatorname{Re}(1)-\mathrm{C}(12)=1.950(5), \operatorname{Re}(1)-\mathrm{C}(11)=1.914(5), \operatorname{Re}(1)-\mathrm{C}(13)=1.922(6)$; $\mathrm{Sb}(1)-\operatorname{Re}(1)-\mathrm{C}(14)=92.48(11), \quad \mathrm{Sb}(2)-\operatorname{Re}(1)-\mathrm{C}(14)=83.33(11), \quad \mathrm{Sb}(1)-$ $\operatorname{Re}(1)-\operatorname{Sb}(2)=97.669(11)$.
ligands have the $f a c$ structure. The $\mathrm{Re}-\mathrm{Sb}$ distances are very similar to those in $\mathbf{4}, \mathbf{5}$ and $\mathbf{6}, \operatorname{Re}(1)-\mathrm{Sb}(1)=$ $2.7176(4) \AA, \operatorname{Re}(1)-\mathrm{Sb}(2)=2.7151(3) \AA$. The Re-C distance to the phenyl ring is very similar to that in $\mathbf{6}$, $\operatorname{Re}(1)-\mathrm{C}(14)=2.214(5) \AA$.

The reaction of 4 with SbPh_{3} in an octane solution at reflux for 3.5 h provided compounds $\mathbf{6}$ and 7 in low yields, but also provided two new compounds mer- $\mathrm{Re}(\mathrm{Ph})$ $(\mathrm{CO})_{3}\left(\mathrm{SbPh}_{3}\right)_{2}(\mathbf{8})$ in 4% yield and of $\mathrm{Re}_{2}(\mathrm{CO})_{7}\left(\mathrm{SbPh}_{3}\right)^{-}$ $\left(\mu-\mathrm{SbPh}_{2}\right)_{2}(\mathbf{9})$ in 3% yield. Thirty percent of the $\mathbf{4}$ was recovered after the 3.5 h reaction period.

An ORTEP diagram of the structure of $\mathbf{8}$ is shown in Fig. 5. Compound $\mathbf{8}$ is an isomer of 7. The three CO ligands have a mer structure with the two SbPh_{3} ligands occupying trans-coordination sites, $\mathrm{Sb}(1)-\operatorname{Re}(1)-\mathrm{Sb}(2)=$ $176.683(3)^{\circ}$. The $\mathrm{Re}-\mathrm{Sb}$ distances are significantly shorter than those in 4,5 and $\mathbf{6}, \operatorname{Re}(1)-\mathrm{Sb}(1)=2.6482(2) \AA$ and $\operatorname{Re}(1)-\mathrm{Sb}(2)=2.6449(2) \AA$. The Re-C distance to the σ-bonded phenyl ring is similar to that in 6 and 7, $\operatorname{Re}(1)-\mathrm{C}(14)=2.214(5) \AA$ (see Scheme 4).

Compound 9 crystallizes with two independent molecules in the asymmetric crystal unit. Both molecules are structurally similar. An ORTEP diagram of the structure of one of two crystallographically independent molecules of $\mathbf{9}$ is shown in Fig. 6. Compound 9 is a dirhenium complex similar to 4 , but it contains two bridging SbPh_{2} ligands. The $\operatorname{Re}-\operatorname{Re}$ distance in $9, \operatorname{Re}(1)-\operatorname{Re}(2)=$ $4.394(1) \AA, \operatorname{Re}(3)-\operatorname{Re}(4)=4.391(1) \AA$, is shorter than that in 4, $4.785(1) \AA$, but much longer than that in 2, $3.1685(3) \AA(3.1971(4) \AA)$ which contains a Re-Re bond [1]. In fact, both metals in $\mathbf{9}$ have 18 electron configurations on the basis of their ligand content, so there is no need to

Fig. 5. An ORTEP diagram of the molecular structure of mer$\operatorname{Re}(\mathrm{Ph})(\mathrm{CO})_{3}\left(\mathrm{SbPh}_{3}\right)_{2}(8)$, showing 30% thermal ellipsoid probability. Selected interatomic bond distances (\AA) and angles $\left({ }^{\circ}\right)$ are as follows: $\operatorname{Re}(1)-$ $\mathrm{Sb}(1)=2.6482(2), \quad \operatorname{Re}(1)-\mathrm{Sb}(2)=2.6449(2), \quad \operatorname{Re}(1)-\mathrm{C}(14)=2.230(3)$, $\operatorname{Re}(1)-\mathrm{C}(12)=1.940(4), \operatorname{Re}(1)-\mathrm{C}(11)=1.967(4), \operatorname{Re}(1)-\mathrm{C}(13)=1.980(4)$; $\mathrm{Sb}(1)-\operatorname{Re}(1)-\mathrm{C}(14)=91.80(7), \quad \mathrm{Sb}(2)-\operatorname{Re}(1)-\mathrm{C}(14)=84.99(7), \quad \mathrm{Sb}(1)-$ $\operatorname{Re}(1)-\operatorname{Sb}(2)=176.683(3)$.

Scheme 4.

Fig. 6. An ORTEP diagram of the molecular structure of $\mathrm{Re}_{2}(\mathrm{CO})_{7}$ -$\left(\mathrm{SbPh}_{3}\right)\left(\mu-\mathrm{SbPh}_{2}\right)_{2} \quad(9)$, showing 30% thermal ellipsoid probability. Selected interatomic bond distances (\AA) are as follows: $\operatorname{Re}(1) \ldots \operatorname{Re}(2)=$ 4.394(1), $\operatorname{Re}(3) \ldots \operatorname{Re}(4)=4.391$ (1), $\operatorname{Re}(1)-\operatorname{Sb}(3)=2.7412(18), \operatorname{Re}(1)-$ $\mathrm{Sb}(2)=2.7638(12), \operatorname{Re}(1)-\mathrm{Sb}(1)=2.7670(13), \operatorname{Re}(2)-\mathrm{Sb}(2)=2.7655(13)$, $\operatorname{Re}(2)-\mathrm{Sb}(1)=2.7772(13), \quad \operatorname{Re}(3)-\mathrm{Sb}(5)=2.7669(12), \quad \operatorname{Re}(3)-\mathrm{Sb}(4)=$ $2.7753(12), \operatorname{Re}(4)-\operatorname{Sb}(6)=2.7410(18), \operatorname{Re}(4)-\operatorname{Sb}(5)=2.7546(12), \operatorname{Re}(4)-$ $\mathrm{Sb}(4)=2.7753(12)$.
expect the presence of a metal-metal bond. One rhenium atom in 9 has four CO ligands and the other rhenium atom has three CO ligands and one SbPh_{3} ligand that lies cis to the two bridging SbPh_{2} ligands. Compound 9 is structurally very similar to $\mathbf{1 2}$ [9]. The $\mathrm{Re}-\mathrm{Sb}$ distances to the bridging SbPh_{2} ligands $\operatorname{Re}(1)-\mathrm{Sb}(2)=2.7638(12) \AA$, $\operatorname{Re}(1)-\mathrm{Sb}(1)=2.7670(13) \AA, \operatorname{Re}(2)-\operatorname{Sb}(2)=2.7655(13) \AA$,
$\operatorname{Re}(2)-\mathrm{Sb}(1)=2.7772(13) \AA, \operatorname{Re}(3)-\mathrm{Sb}(4)=2.7753(12) \AA$, $\operatorname{Re}(4)-\mathrm{Sb}(5)=2.7546(12) \AA, \operatorname{Re}(4)-\mathrm{Sb}(4)=2.7753(12) \AA$ are similar to those 12, 2.748(2) \AA and $2.731(1) \AA$ and in 4, see above. The $\mathrm{Re}-\mathrm{Sb}$ distances to the terminally coordinated SbPh_{3} ligands are similar than those in 4, 5, 6, 7 and 12, $\operatorname{Re}(1)-\operatorname{Sb}(3)=2.7412(18) \AA$ and $\operatorname{Re}(4)-\operatorname{Sb}(6)=$ $2.7410(18) \AA$.

When hydrogen was purged through an octane solution of 4 at reflux for 3.5 h , three compounds were formed. These included 9 in a slightly higher yield 7%, and two new compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ in 31% and 9% yields, respectively, see Scheme 5.

The coproduct benzene was observed spectroscopically (${ }^{1}$ H NMR) when the reaction was performed under hydrogen in an NMR tube in d_{8}-toluene solvent at $100^{\circ} \mathrm{C}$. Compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ were both characterized crystallographically. Compound $\mathbf{1 0}$ contains two crystallographically independent molecules in the asymmetric crystal unit. Both molecules are structurally similar. Compound 11 is simply a SbPh_{3} derivative of $\mathbf{1 0}$. ORTEP diagrams of the molecular structures of $\mathbf{1 0}$ and $\mathbf{1 1}$ are shown in Figs. 7 and 8 , respectively. Both compounds contain two mutually bonded rhenium atoms that are bridged by a SbPh_{2} ligand and a hydrido ligand. The Re-Re bond distances are $3.2244(6) \AA[3.2396(5) \AA]$ in $\mathbf{1 0}$ and $3.2574(5) \AA$ in $\mathbf{1 1}$. The slightly longer length of the Re-Re bond in $\mathbf{1 1}$ is probably due to steric interactions caused by the bulky SbPh_{3} ligand on the atom $\operatorname{Re}(2)$. The $\operatorname{Re}-\operatorname{Re}$ bond distance in the related phosphido complex $\mathrm{Re}_{2}(\mathrm{CO})_{8}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})$ is slightly shorter at $3.165(1) \AA$, possibly because the phosphorus atom is smaller than the antimony atoms in $\mathbf{1 0}$ and $\mathbf{1 1}$ [13]. The $\mathrm{Re}-\mathrm{Sb}$ bond distances to the bridging SbPh_{2} ligand in $\mathbf{1 0}$ are slightly shorter than those in $\mathbf{4}$

Scheme 5.

Fig. 7. An ORTEP diagram of the molecular structure of $\mathrm{Re}_{2}(\mathrm{CO})_{8}(\mu$ -$\left.\mathrm{SbPh}_{2}\right)(\mu-\mathrm{H})(\mathbf{1 0})$ showing 30% thermal ellipsoid probability. Selected interatomic bond distances (\AA) and angles $\left({ }^{\circ}\right)$ are as follows: $\operatorname{Re}(1)-$ $\operatorname{Re}(2)=3.2244(6), \operatorname{Re}(1)-\mathrm{Sb}(1)=2.6934(7), \operatorname{Re}(1)-\mathrm{H}(1)=1.98(7), \operatorname{Re}(2)-$ $\mathrm{Sb}(1)=2.6983(7), \quad \operatorname{Re}(2)-\mathrm{H}(1)=1.70(7), \quad \operatorname{Re}(3)-\mathrm{Sb}(6)=2.6983(8)$, $\operatorname{Re}(3)-\operatorname{Re}(4)=3.2396(5), \operatorname{Re}(3)-\mathrm{H}(2)=2.00(7), \operatorname{Re}(4)-\mathrm{Sb}(6)=2.6969(7)$, $\mathrm{Re}(4)-\mathrm{H}(2)=1.82(7)$.

Fig. 8. An ORTEP diagram of the molecular structure of $\mathrm{Re}_{2}(\mathrm{CO})_{7}-$ $\left(\mathrm{SbPh}_{3}\right)\left(\mu-\mathrm{SbPh}_{2}\right)(\mu-\mathrm{H})(11)$ showing 30% thermal ellipsoid probability. Selected interatomic bond distances (\AA) and angles $\left({ }^{\circ}\right)$ are as follows: $\operatorname{Re}(1)-\operatorname{Re}(2)=3.2574(5), \operatorname{Re}(1)-\operatorname{Sb}(1)=2.6948(7), \operatorname{Re}(2)-\operatorname{Sb}(1)=2.6426(7)$, $\operatorname{Re}(2)-\mathrm{Sb}(2)=2.6430(7) ; \mathrm{Sb}(1)-\operatorname{Re}(2)-\mathrm{Sb}(2)=157.09(3)$.
and 9 and are nearly equal in length: $\operatorname{Re}(1)-\operatorname{Sb}(1)=$ $2.6934(7) \AA, \quad \operatorname{Re}(2)-\operatorname{Sb}(1)=2.6983(7) \AA, \quad[\operatorname{Re}(3)-\operatorname{Sb}(6)=$ 2.6983(8) $\AA, \operatorname{Re}(4)-\operatorname{Sb}(6)=2.6969(7) \AA]$. In contrast, the $\mathrm{Re}-\mathrm{Sb}$ bond distances to the bridging SbPh_{2} ligand in 11 are significantly different, $\operatorname{Re}(1)-\mathrm{Sb}(1)=2.6948(7) \mathrm{A}$, $\operatorname{Re}(2)-\operatorname{Sb}(1)=2.6426(7) \AA$ with the shorter distance being associated with the rhenium atom that contains the bulky SbPh_{3} ligand. The SbPh_{3} ligand in $\mathbf{1 1}$ lies approximately
trans to the short $\operatorname{Re}-\mathrm{Sb}$ bond, $\mathrm{Sb}(1)-\operatorname{Re}(2)-\mathrm{Sb}(2)=$ $157.09(3)^{\circ}$. The shortness of the proximate $\mathrm{Re}-\mathrm{Sb}$ bond is thus probably the result of a weaker structural trans-effect due to the different π-backbonding properties of the SbPh_{3} ligand compared to that of CO ligands that lie trans to both $\mathrm{Re}-\mathrm{Sb}$ bonds in $\mathbf{1 0}$ and in $\mathbf{1 1}$. Compound $\mathbf{1 0}$ is structurally similar to the compound $\mathrm{Re}_{2}(\mathrm{CO})_{7}\left(\mathrm{PPh}_{3}\right)\left(\mu-\mathrm{PPh}_{2}\right)-$ $(\mu-H)$ [14]. A similar structural trans-effect was observed in the $\mathrm{Re}-\mathrm{P}$ bond distances involving the bridging PPh_{2} ligand in this molecule. Compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ both contain bridging hydrido ligands that lie opposite to the bridging SbPh_{2} ligand. The hydrido ligand was located and refined in the structural analyses of 10: $\operatorname{Re}(1)-$ $\mathrm{H}(1)=1.98(7) \AA, \operatorname{Re}(2)-\mathrm{H}(1)=1.70(7) \AA, \quad[\operatorname{Re}(3)-\mathrm{H}(2)=$ $2.00(7) \AA, \operatorname{Re}(4)-H(2)=1.82(7) \AA]$. The bridging hydrido ligand in 11 was located and refined with geometric constraints. As expected, both hydride ligands exhibit very high field resonance shifts in the ${ }^{1} \mathrm{H}$ NMR spectrum of the compounds: $\delta=-16.34$ for 10 and -16.00 for 11 .

4. Summary

It has been shown that a phenyl group is readily cleaved from SbPh_{3} in its reactions with the rhenium carbonyl complexes 1 and $\operatorname{Re}_{2}(\mathrm{CO})_{10}$. The novel σ-phenyl complex 4 was formed by insertion of a rhenium atom into the $\mathrm{Sb}-\mathrm{C}$ (phenyl) bond. The rhenium-rhenium bond was also cleaved in the process. Interestingly, even in the reaction of SbPh_{3} with 1 at room temperature, there was no evidence for formation of the compound $\mathrm{Re}_{2}(\mathrm{CO})_{8}\left(\mathrm{SbPh}_{3}\right)_{2}$, a likely intermediate in the formation of 4 , even though the bisPPh_{3} complex $\mathrm{Re}_{2}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)_{2}$ is stable and well known [14]. It must be that the $\mathrm{Sb}-\mathrm{C}$ cleavage process is simply too facile even at this low temperature. The dirhenium complex 4 is split by reaction with an additional quantity of SbPh_{3} to yield a series of monorhenium SbPh_{3} complexes 6-8 containing a σ-phenyl ligand. When $\mathbf{4}$ was treated with hydrogen, the phenyl ligand was eliminated and the dirhenium complexes $\mathbf{1 0}$ and $\mathbf{1 1}$ were formed that contain a bridging hydrido ligands. The doubly SbPh_{2}-bridged dirhenium complex 9 that has no metal-metal bond was also formed in these two reactions.

Acknowledgement

This research was supported by the Office of Basic Energy Sciences of the US Department of Energy under Grant No. DE-FG02-00ER14980.

Appendix A. Supplementary material

CCDC 666183, 666184, 666185, 666186, 666187, 666188,666189 and 666190 contain the supplementary crystallographic data for compounds $\mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}, \mathbf{1 0}$ and 11, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary
data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2007.11.028.

References

[1] (a) R.D. Adams, B. Captain, R.H. Herber, M. Johansson, I. Nowik, J.L. Smith Jr., M.D. Smith, Inorg. Chem. 44 (2005) 6346; (b) R.D. Adams, B. Captain, M. Johansson, J.L. Smith Jr., J. Am. Chem. Soc. 127 (2005) 489.
[2] R.D. Adams, B. Captain, L. Zhu, Inorg. Chem. 44 (2005) 6623.
[3] (a) P. Garrou, Chem. Rev. 85 (1985) 171;
(b) M.I. Bruce, N.N. Zaitseva, B.W. Skelton, A.H. White, J. Organomet. Chem. 515 (1996) 143;
(c) C.W. Bradford, R.S. Nyholm, G.J. Gainsford, J.M. Guss, P.R. Ireland, R. Mason, J. Chem. Soc., Chem. Commun. (1972) 87; (d) G.J. Gainsford, J.M. Guss, P.R. Ireland, R. Mason, C.W. Bradford, R.S. Nyholm, J. Organomet. Chem. 40 (1972) C70;
(e) A.J. Deeming, S.E. Kabir, M. Underhill, J. Chem. Soc., Dalton Trans. (1973) 2589;
(f) A.J. Deeming, I.P. Rothwell, M.B. Hursthouse, J.D. BackerDirks, J. Chem. Soc., Dalton Trans. (1981) 1879;
(g) S.C. Brown, J. Evans, M.J. Webster, J. Chem. Soc., Dalton Trans. (1980) 1021;
(h) R.D. Adams, B. Captain, W. Fu, M.D. Smith, J. Organomet. Chem. 651 (2002) 124.
[4] (a) W.K. Leong, G. Chen, Organometallics 20 (2001) 2280; (b) W.K. Leong, G. Chen, J. Cluster Sci. 17 (2006) 111.
[5] P.O. Nubel, T.L. Brown, J. Am. Chem. Soc. 106 (1984) 644.
[6] saint+, version 6.2a, Bruker Analytical X-ray Systems, Inc., Madison, WI, 2001.
[7] G.M. Sheldrick, Shelxtl, version 6.1, Bruker Analytical X-ray Systems, Inc., Madison, WI, 1997.
[8] M.R. Churchill, K.N. Amoh, H.J. Wasserman, Inorg. Chem. 20 (1981) 1609.
[9] U. Flörke, M. Woyciechowski, H.-J. Haupt, Acta Crystallogr., Sect. C 44 (1988) 2101.
[10] A.H. Klahn, A. Toro, M. Arenas, V. Manriquez, O. Wittke, J. Organomet. Chem. 532 (1997) 39.
[11] D.M. Kimari, Am. Duzs-Moore, J. Cook, K.E. Miller, T.A. Budzichowski, D.M. Ho, S.K. Mandal, Inorg. Chem. Commun. 8 (2005) 14.
[12] G. Albertin, S. Antoniutti, S. Garcia-Fontan, R. Carballo, F. Padoan, J. Chem. Soc., Dalton Trans. (1998) 2071.
[13] U. Florke, H.-J. Haupt, Z. Kristallogr. 209 (1994) 702.
[14] H.-J. Haupt, P. Balsaa, U. Florke, Inorg. Chem. 27 (1988) 280.

[^0]: * Corresponding author. Tel.: +1 8037777187.

 E-mail address: Adams@mail.chem.sc.edu (R.D. Adams).

